Copied to
clipboard

G = C23.18D14order 224 = 25·7

8th non-split extension by C23 of D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.18D14, (C2×D4).5D7, (C2×C14).7D4, C14.47(C2×D4), (C2×C4).18D14, C23.D78C2, Dic7⋊C414C2, (D4×C14).10C2, C14.29(C4○D4), (C2×C14).50C23, (C2×C28).61C22, (C22×Dic7)⋊5C2, C22.4(C7⋊D4), C75(C22.D4), C2.15(D42D7), C22.57(C22×D7), (C22×C14).18C22, (C2×Dic7).17C22, C2.11(C2×C7⋊D4), SmallGroup(224,130)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C23.18D14
C1C7C14C2×C14C2×Dic7C22×Dic7 — C23.18D14
C7C2×C14 — C23.18D14
C1C22C2×D4

Generators and relations for C23.18D14
 G = < a,b,c,d,e | a2=b2=c2=d14=1, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >

Subgroups: 254 in 78 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C14, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic7, C28, C2×C14, C2×C14, C2×C14, C22.D4, C2×Dic7, C2×Dic7, C2×C28, C7×D4, C22×C14, Dic7⋊C4, C23.D7, C23.D7, C22×Dic7, D4×C14, C23.18D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C22.D4, C7⋊D4, C22×D7, D42D7, C2×C7⋊D4, C23.18D14

Smallest permutation representation of C23.18D14
On 112 points
Generators in S112
(1 38)(2 32)(3 40)(4 34)(5 42)(6 36)(7 30)(8 31)(9 39)(10 33)(11 41)(12 35)(13 29)(14 37)(15 93)(16 87)(17 95)(18 89)(19 97)(20 91)(21 85)(22 88)(23 96)(24 90)(25 98)(26 92)(27 86)(28 94)(43 75)(44 108)(45 77)(46 110)(47 79)(48 112)(49 81)(50 100)(51 83)(52 102)(53 71)(54 104)(55 73)(56 106)(57 72)(58 105)(59 74)(60 107)(61 76)(62 109)(63 78)(64 111)(65 80)(66 99)(67 82)(68 101)(69 84)(70 103)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 15)(7 16)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 86)(30 87)(31 88)(32 89)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 96)(40 97)(41 98)(42 85)(43 67)(44 68)(45 69)(46 70)(47 57)(48 58)(49 59)(50 60)(51 61)(52 62)(53 63)(54 64)(55 65)(56 66)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(99 106)(100 107)(101 108)(102 109)(103 110)(104 111)(105 112)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 27)(16 28)(17 22)(18 23)(19 24)(20 25)(21 26)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 60)(44 61)(45 62)(46 63)(47 64)(48 65)(49 66)(50 67)(51 68)(52 69)(53 70)(54 57)(55 58)(56 59)(71 103)(72 104)(73 105)(74 106)(75 107)(76 108)(77 109)(78 110)(79 111)(80 112)(81 99)(82 100)(83 101)(84 102)(85 92)(86 93)(87 94)(88 95)(89 96)(90 97)(91 98)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 81 22 106)(2 73 23 112)(3 79 24 104)(4 71 25 110)(5 77 26 102)(6 83 27 108)(7 75 28 100)(8 99 17 74)(9 105 18 80)(10 111 19 72)(11 103 20 78)(12 109 21 84)(13 101 15 76)(14 107 16 82)(29 51 93 44)(30 60 94 67)(31 49 95 56)(32 58 96 65)(33 47 97 54)(34 70 98 63)(35 45 85 52)(36 68 86 61)(37 43 87 50)(38 66 88 59)(39 55 89 48)(40 64 90 57)(41 53 91 46)(42 62 92 69)

G:=sub<Sym(112)| (1,38)(2,32)(3,40)(4,34)(5,42)(6,36)(7,30)(8,31)(9,39)(10,33)(11,41)(12,35)(13,29)(14,37)(15,93)(16,87)(17,95)(18,89)(19,97)(20,91)(21,85)(22,88)(23,96)(24,90)(25,98)(26,92)(27,86)(28,94)(43,75)(44,108)(45,77)(46,110)(47,79)(48,112)(49,81)(50,100)(51,83)(52,102)(53,71)(54,104)(55,73)(56,106)(57,72)(58,105)(59,74)(60,107)(61,76)(62,109)(63,78)(64,111)(65,80)(66,99)(67,82)(68,101)(69,84)(70,103), (1,17)(2,18)(3,19)(4,20)(5,21)(6,15)(7,16)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,98)(42,85)(43,67)(44,68)(45,69)(46,70)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,27)(16,28)(17,22)(18,23)(19,24)(20,25)(21,26)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,60)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68)(52,69)(53,70)(54,57)(55,58)(56,59)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112)(81,99)(82,100)(83,101)(84,102)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,81,22,106)(2,73,23,112)(3,79,24,104)(4,71,25,110)(5,77,26,102)(6,83,27,108)(7,75,28,100)(8,99,17,74)(9,105,18,80)(10,111,19,72)(11,103,20,78)(12,109,21,84)(13,101,15,76)(14,107,16,82)(29,51,93,44)(30,60,94,67)(31,49,95,56)(32,58,96,65)(33,47,97,54)(34,70,98,63)(35,45,85,52)(36,68,86,61)(37,43,87,50)(38,66,88,59)(39,55,89,48)(40,64,90,57)(41,53,91,46)(42,62,92,69)>;

G:=Group( (1,38)(2,32)(3,40)(4,34)(5,42)(6,36)(7,30)(8,31)(9,39)(10,33)(11,41)(12,35)(13,29)(14,37)(15,93)(16,87)(17,95)(18,89)(19,97)(20,91)(21,85)(22,88)(23,96)(24,90)(25,98)(26,92)(27,86)(28,94)(43,75)(44,108)(45,77)(46,110)(47,79)(48,112)(49,81)(50,100)(51,83)(52,102)(53,71)(54,104)(55,73)(56,106)(57,72)(58,105)(59,74)(60,107)(61,76)(62,109)(63,78)(64,111)(65,80)(66,99)(67,82)(68,101)(69,84)(70,103), (1,17)(2,18)(3,19)(4,20)(5,21)(6,15)(7,16)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,98)(42,85)(43,67)(44,68)(45,69)(46,70)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,27)(16,28)(17,22)(18,23)(19,24)(20,25)(21,26)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,60)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68)(52,69)(53,70)(54,57)(55,58)(56,59)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112)(81,99)(82,100)(83,101)(84,102)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,81,22,106)(2,73,23,112)(3,79,24,104)(4,71,25,110)(5,77,26,102)(6,83,27,108)(7,75,28,100)(8,99,17,74)(9,105,18,80)(10,111,19,72)(11,103,20,78)(12,109,21,84)(13,101,15,76)(14,107,16,82)(29,51,93,44)(30,60,94,67)(31,49,95,56)(32,58,96,65)(33,47,97,54)(34,70,98,63)(35,45,85,52)(36,68,86,61)(37,43,87,50)(38,66,88,59)(39,55,89,48)(40,64,90,57)(41,53,91,46)(42,62,92,69) );

G=PermutationGroup([[(1,38),(2,32),(3,40),(4,34),(5,42),(6,36),(7,30),(8,31),(9,39),(10,33),(11,41),(12,35),(13,29),(14,37),(15,93),(16,87),(17,95),(18,89),(19,97),(20,91),(21,85),(22,88),(23,96),(24,90),(25,98),(26,92),(27,86),(28,94),(43,75),(44,108),(45,77),(46,110),(47,79),(48,112),(49,81),(50,100),(51,83),(52,102),(53,71),(54,104),(55,73),(56,106),(57,72),(58,105),(59,74),(60,107),(61,76),(62,109),(63,78),(64,111),(65,80),(66,99),(67,82),(68,101),(69,84),(70,103)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,15),(7,16),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,86),(30,87),(31,88),(32,89),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,96),(40,97),(41,98),(42,85),(43,67),(44,68),(45,69),(46,70),(47,57),(48,58),(49,59),(50,60),(51,61),(52,62),(53,63),(54,64),(55,65),(56,66),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(99,106),(100,107),(101,108),(102,109),(103,110),(104,111),(105,112)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,27),(16,28),(17,22),(18,23),(19,24),(20,25),(21,26),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,60),(44,61),(45,62),(46,63),(47,64),(48,65),(49,66),(50,67),(51,68),(52,69),(53,70),(54,57),(55,58),(56,59),(71,103),(72,104),(73,105),(74,106),(75,107),(76,108),(77,109),(78,110),(79,111),(80,112),(81,99),(82,100),(83,101),(84,102),(85,92),(86,93),(87,94),(88,95),(89,96),(90,97),(91,98)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,81,22,106),(2,73,23,112),(3,79,24,104),(4,71,25,110),(5,77,26,102),(6,83,27,108),(7,75,28,100),(8,99,17,74),(9,105,18,80),(10,111,19,72),(11,103,20,78),(12,109,21,84),(13,101,15,76),(14,107,16,82),(29,51,93,44),(30,60,94,67),(31,49,95,56),(32,58,96,65),(33,47,97,54),(34,70,98,63),(35,45,85,52),(36,68,86,61),(37,43,87,50),(38,66,88,59),(39,55,89,48),(40,64,90,57),(41,53,91,46),(42,62,92,69)]])

C23.18D14 is a maximal subgroup of
(C2×C28).D4  C23.4D28  C23.5D28  2+ 1+4.2D7  C42.102D14  C42.105D14  C4216D14  C42.118D14  C24.56D14  C24.32D14  C242D14  C24.35D14  C24.36D14  C4⋊C4.178D14  C14.342+ 1+4  C14.352+ 1+4  C14.712- 1+4  C14.402+ 1+4  C14.732- 1+4  C14.422+ 1+4  C14.432+ 1+4  C14.442+ 1+4  C14.492+ 1+4  C14.792- 1+4  C14.802- 1+4  C14.602+ 1+4  D7×C22.D4  C14.832- 1+4  C14.672+ 1+4  C42.137D14  C42.140D14  C4221D14  C42.166D14  C42.168D14  C4228D14  C247D14  C24.42D14  C14.1042- 1+4  C14.1052- 1+4  (C2×C28)⋊15D4
C23.18D14 is a maximal quotient of
C23.42D28  C24.3D14  C24.46D14  C24.7D14  C24.9D14  C24.10D14  C22.23(Q8×D7)  (C2×C4).44D28  (C2×C28).55D4  (C2×C14).D8  C4⋊D4.D7  (C2×D4).D14  C22⋊Q8.D7  (C2×C14).Q16  C14.(C4○D8)  C24.18D14  C24.20D14

44 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A7B7C14A···14I14J···14U28A···28F
order1222222444444477714···1414···1428···28
size111122441414141428282222···24···44···4

44 irreducible representations

dim111112222224
type+++++++++-
imageC1C2C2C2C2D4D7C4○D4D14D14C7⋊D4D42D7
kernelC23.18D14Dic7⋊C4C23.D7C22×Dic7D4×C14C2×C14C2×D4C14C2×C4C23C22C2
# reps1231123436126

Matrix representation of C23.18D14 in GL4(𝔽29) generated by

1000
0100
00127
00028
,
28000
02800
0010
0001
,
1000
0100
00280
00028
,
24000
27600
0010
00128
,
26200
24300
00120
001217
G:=sub<GL(4,GF(29))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,27,28],[28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[24,27,0,0,0,6,0,0,0,0,1,1,0,0,0,28],[26,24,0,0,2,3,0,0,0,0,12,12,0,0,0,17] >;

C23.18D14 in GAP, Magma, Sage, TeX

C_2^3._{18}D_{14}
% in TeX

G:=Group("C2^3.18D14");
// GroupNames label

G:=SmallGroup(224,130);
// by ID

G=gap.SmallGroup(224,130);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,96,218,188,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^14=1,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations

׿
×
𝔽